Efficacy of *Trichoderma harzianum* (Edtm) and *Trichoderma aureoviride* (T4) as potential bio-control agent of taro leaf blight caused by *Phytophthora colocasiae*

Ntah A. Ayong Moïse¹, Tchameni Nguemezi Severin¹, Siebatcheu Eveline Christelle¹, Ambata Ambata Henri Tibo¹, Sameza Modeste Lambert¹* and Wansi Jean Duplex²

¹Laboratory of Biochemistry, Department of Biochemistry, Faculty of Sciences, University of Douala, Cameroon, P. O. Box 24 157 Douala, Cameroon.
²Laboratory of Chemistry, Department of Chemistry, Faculty of Sciences, University of Douala, Cameroon, P. O. Box 24 157 Douala, Cameroon.

ABSTRACT

Leaf blight disease caused by *Phytophthora colocasiae* is the main constraint affecting taro plants in tropical and sub-tropical countries. To control the disease, farmers commonly use chemical pesticides. Despite the efficacy of these chemical pesticides, their continued use is harmful to human and the environment. The alternative is the use of bio-control agents such as *Trichoderma spp*. The aim of this study was to evaluate the effect of *Trichoderma harzianum* (Edtm) and *Trichoderma aureoviride* (T4) as bio-control agents against *P. colocasiae*. The antagonism was evaluated by dual culture. The organic extracts were obtained by fermentation of each isolate of *Trichoderma* on potato dextrose broth (PDB). The chemical screening of the extracts was done and their efficiency on *P. colocasiae* was evaluated by poisoning method. The ability of the two antagonists to induce defense-related metabolites was done in pot experiments. In dual culture, the inhibition of the mycelia growth of the *P. colocasiae* was 34.77 and 41.77% for *T. harzianum* (Edtm) and *T. aureoviride* (T4), respectively. The organic extracts contained phenols, flavonoids, alkaloids, sterols and anthocyanins. Total inhibition (100%) of the mycelial growth of *P. colocasiae* was realized at 200 and 300µg/plug, respectively from *T. harzianum* (Edtm) and *T. aureoviride* (T4) organic extracts. In pot cultures, *T. harzianum* (Edtm) and *T. aureoviride* (T4) significantly reduced (49.4 and 46.4%, respectively) the necrosis of taro leaf blight. These strains significantly increased the activities of phenylalanine ammonia lyase (PAL), polyphenol oxidase (PPO) and polyphenol content in healthy and infected taro plants. These findings suggested that the use of *T. harzianum* (Edtm) and *T. aureoviride* (T4) could be a promising alternative to bio-control taro leaf blight.

©2018 BluePen Journals Ltd. All rights reserved

INTRODUCTION

Taro [*Colocasia esculenta* (L.) Schott.] is the 14th most consumed vegetable worldwide. It is an important source of carbohydrates, vitamins, minerals and is used as staple or subsistence crop for millions of people in developing countries (Lebot and Aradhya, 1991; Misra and Sriram, 2002). In Cameroon, its production was estimated about 1.8 tonnes (FAO, 2016). Despite their importance, taro plants face several production...
constraints. Among them, the most redoubleable is taro leaf blight caused by an Oomycete namely Phytophthora colocasiae. The pathogen affects leaves and petioles, resulting in extensive damage of the foliage and reduction of biomass production (Misra et al., 2008; Fontem and Mbang, 2011). Taro leaf blight was first reported in Cameroon in 2010 with yield reductions of 90% (Mbang et al., 2013).

To control taro leaf blight, farmers currently use chemical pesticides such as Ridomil (Metalaxyl 4% and Mancozeb 64%) (Mbang et al., 2013). Although this approach has shown promising results, phytotoxicity and chemical residues are serious problems leading to environmental pollution and human health hazards (Reshu and Khan, 2012; Nelson et al., 2011). Moreover, they are not totally effective and often lead to the appearance of resistant strains of the pathogens (Hwang and Benson 2005; Nath et al., 2012, 2013). For these reasons, it is clear that an eco-friendly alternative strategy to fight against taro leaf blight is needed. In this respect, the use of micro-organisms such as fungal antagonists for pest management in agriculture is one of the most effective strategies of biological control (Vinale et al., 2008; Abdel-Kader et al., 2012; Saba et al. 2012).

Among the fungi, Trichoderma strains are the most studied biocontrol agents and have been successfully used as biopesticides and biofertilizers in greenhouse and field plant production (Abdel-Kader et al., 2012). However, outcomes of using beneficial microbes are strain dependent (Harman et al., 2004; Vinale et al., 2008). These biocontrol properties are due to different mechanisms of action such as competition for space and nutrients (Che, 1997; Howell, 2003); the production of cell wall-lytic enzyme, antibiotic, mycoparasitism and the induction of systemic resistance to pathogens in plants (Harman et al., 2004; Feng et al., 2013; Carvalho et al., 2014). The antagonistic properties of Trichoderma spp. in terms of antibiotic production have been the subject of intensives studies. The production of these compounds called secondary metabolites, although belonging to several chemical groups namely alkaloids, phenols, terpenes and polyketides are able to affect the interactions of plants with their pathogens (Küçük and Kivanç, 2005; Arjona-Girona et al., 2014; Vinale et al., 2014). In addition, the induction of systemic resistance in plants by Trichoderma spp. is often characterized by the synthesis of biochemical substances such as proteins, amino acids, phenolic compounds, sugars and enzymes [phenylalanine ammonia lyase (PAL) and polyphenol oxidases (PPO)] (Madhavi et al., 2018; Prasad et al., 2016; Tchameni et al., 2017). All these strategies used by Trichoderma spp. are often complementary and help to neutralize the pathogen and thereby reduce the incidence of the disease. In our laboratory, many species of Trichoderma were isolated from taro plant rhizosphere. The screening of these isolates for their antagonism against P. colocasiae, revealed that T. harzianum (Edtm) and T. aureoviride (T4) were the most effective (Siebatcheu, 2014). However the effect of these antagonists as stimulators of taro plants resistance was not studied. The aim of this work was therefore to study the effect of extracts from T. harzianum (Edtm) and T. aureoviride (T4) to inhibit P. colocasiae and the ability of these strains beneficial organisms to stimulate biochemical defense in taro plants.

MATERIALS AND METHODS

Trichoderma strains

The strains of T. harzianum (Edtm) and T. aureoviride (T4) used in this study came from the culture collection of the Biochemistry Laboratory, University of Douala (Cameroon). The detail of the isolation and the morphological identification are given by Siebatcheu (2014).

Pathogen agent

P. colocasiae was isolated from infected taro leaf samples collected in a field located at Douala – Cameroon. Leaf tissue fragments of 1 to 2 cm in size were excised from lesion margin of infected leaves. The surface was sterilized with alcohol (70%) for 30-40 s, rinsed twice with sterile distilled water and dried by sterilized blotting paper. Fragments were then inoculated on V8 agar medium in Petri dishes and incubated for 3 days at room temperature. P. colocasiae emerging from the infected tissue was purified by successive transfer and identified using the key of Erwin and Ribeiro (1996). The pathogenicity of these isolates was carried out on taro leaf discs as described by Sameza et al. (2014).

In vitro antagonism assay

The antagonistic potential of Trichoderma isolates was evaluated against P. colocasiae using dual culture. Mycelial discs (5 mm diameter) were taken from 3 days old cultures of the antagonist and the pathogen. The discs were then paired on V8 agar plate in 90 mm Petri dishes. P. colocasiae was inoculated two days before Trichoderma strains. Plates inoculated only with the antagonist or pathogen served as control. All culture plates were incubated at room temperature for 8 days and the data expressed as the inhibition of P. colocasiae.

*Corresponding author. E-mail: samezamste@yahoo.com.
radial growth:

\[\%I = \frac{(D_0 - D_x)}{D_0} \times 100. \]

Where, Do is radial growth of pathogen in the control and Dx radial growth of pathogen in dual culture. In order to evaluate the survival of the micro-organisms, plugs were randomly removed from the intermingling regions and incubated on V8 medium supplemented with Benomil (inhibitor of Trichoderma) or with Chloramphenicol (inhibitor of P. colocasiae).

Liquid culture and extraction of secondary metabolites

Five agar plugs from 2 days pre-culture of *Trichoderma* were introduced into 1 L conical flask containing 250 mL of PDB. The flask was incubated at 25°C in dark under stationary condition for 30 days. Cultures were then filtered on vacuum using Whatman paper N°4. The filtrate was extracted twice with ethyl acetate and evaporated under reduced pressure at 35°C. The crude residues obtained were stored at 4°C until use (Vinale et al., 2006).

Chemical screening of the crudes extracts

Alkaloids

Fifty milligrams of extract were diluted in 10 ml of 2% H₂SO₄. The mixture was homogenized and boiled for two minutes and then filtered. Five drops of Mayer reagent were added to 1 ml of the filtrate. The development of turbidity confirms the presence of alkaloids (Wagner et al., 1996).

Phenols

Fifty milligrams of extract were dissolved in 3 ml of ethanol, and then 3 drops of 10% FeCl₃ solution were added. The occurrence of a blue-violet or greenish coloration indicated the presence of phenols (Wagner et al., 1996).

Flavonoids

Five hundred milligrams of extract were dissolved in 5 ml of 1 N NaOH. Discoloration of the yellow color obtained after addition of 1 N chloridic acid indicated the presence of flavonoids (Trease and Evans, 2002).

Triterpenes and stérols

Five milligrams of extract were dissolved in 2 ml of chloroform. Three drops of acetic anhydride and two drops concentrated sulfuric acid were added. The development of a red-brick reddish brown coloration was indicative of the presence of triterpenes, and a blue coloring which turns to blue-orange was indicative the presence of sterols (Trease and Evans, 2002).

Anthocyanines

Fifty milligrams of extract were mixed with 15 ml of 1% HCl and the resulting mixture was brought to the boil. The presence of anthocyanins was characterized by the change in color from orange red to orange blue (Bekro et al., 2007).

Quinones

Fifty milligrams of extract were dissolved in 5 ml of 1 N chloric acid. The resulting solution was boiled for 30 min. After cooling, it was extracted with 10 ml of chloroform. Of the extract with chloroform solution, 0.5 ml of dilute ammonia was added. The appearance of a red or purple coloration revealed the presence of quinones (Bekro et al., 2007).

Antimicrobial assay of organic extracts

P. colocasiae plugs from three days preculture was placed at the center of V8 agar plate. The antimicrobial activities were done according to the method described by Vinale et al. (2006). The organic extract was diluted in dimethyl sulfoxide (DMSO) at different concentrations and ten microliters of these solutions were applied on the top of each plug at the rate ranging from 100 to 500 µg plug⁻¹. The same volume of DMSO was applied on the pathogen plug as control. Plates were incubated at 25°C for 3 days and the pathogen growth inhibition calculated according to the formula:

\[\%I = \left[\frac{(D_0 - D_x)}{D_0} \right] \times 100 \]

Where, Do, pathogen growth diameter on control and Dx pathogen growth diameter on treated plate. Each treatment consisted of three replicates and the experiment was repeated twice.

Pots experiment

Preparation of conidial suspension of Trichoderma

Conidial suspension of biocontrol agent was obtained by
liquid culture multiplication. Five agar plugs from 2 days’ pre-culture of *Trichoderma* strains were introduced into 1 L conical flask containing 150 mL of potatoes dextrose broth (PDB). The flask was incubated at 25°C in the dark under stationary condition for 15 days. After fermentation, the cultures were ground using a robot mixer. The resulting solution was adjusted at 1 × 10^6 conidia/mL.

Experimental design

The pots experiment was conducted during the months of December 2017 and January 2018 in the nursery of the Laboratory of Biochemistry of the University of Douala. The local taro cultivar (*ebo coco* variety) which is sensitive to *P. colocasiae* was used as test crop. The taro tubers (one tuber per pot) were introduced into the 4.5 liter polyethylene pots (25 × 30 cm) about 3 cm deep from the surface. These pots contained 3.5 kg of mixture of soil and quartz [3: 1 (w / w)] sterilized twice in two days’ intervals at 121°C for 1 h and allowed to cool for 48 h.

Fifteen days after seeding, each pot was inoculated with 100 mL of conidial suspension of bio-agent except the control which received 100 mL of distilled water. Thirty days after sowing, the plants were infected with *P. colocasiae*. The infection consisted inoculation of each taro leaf with two mycelial disks (6 mm) taken from the margin of mycelial growth of the pathogen. The seedlings thus treated were covered with transparent polystyrene bags for 48 h. Experiment was carried out in a completely randomized design (CRD) with six treatments. Each treatment contained four plants replicated three times. These treatments were divided into two blocks, namely the block of healthy plants and the block of infected plants with *P. colocasiae*. Each block consisted of: untreated plants with *Trichoderma* (ST0); plants treated with *T. harzianum* Edtm (ST1) and plants treated with *T. aureoviride* T4 (ST2). Each pot was watered daily with sterile tap water at a rate of 200 mL per plant. The infected plants were observed daily and the necrosis diameters were noted. Five days after infection, the inhibition of necrosis (I%) of taro leaf blight was evaluated according the formula:

\[I\% = \frac{(D_o-D_x)}{D_o} \times 100 \]

Where, Do is necrosis diameter on untreated plants with *Trichoderma* and infected by *P. colocasiae*, and Dx is necrosis diameter on plants treated with *Trichoderma* and infected by *P. colocasiae*. Thirty-five days after planting, plants were harvested and washed with tap water to remove the soil particles. Leaves were removed and stored in the refrigerator at -20°C for biochemical analysis.

Evaluation of biochemical parameters

Total sugars and cysteine

Soluble sugars and cysteine were extracted from fresh taro leaves in 80% alcohol using the method of Singh et al. (1990). One gram of taro leaves was ground in a porcelain mortar and then introduced into 2 mL of 80% ethanol. The grounded material obtained was centrifuged at 3000 rpm using a centrifuge for 20 min. The supernatants were recovered and stored at +2°C.

The soluble sugars extracted from the taro leaves were determined by the colorimetric method with 3.5-dinitro salicylic acid (DNS) proposed by Fisher and Stein (1961). The supernatant was diluted 10-fold with 80% alcohol. The standard range was obtained from a 0.1% aqueous glucose solution. To these solutions prepared at different concentrations was added DNS reagent (100 μL). Solutions obtained was homogenized, put in water bath at 100°C for 5 min and then cooled in an ice bath. To these solutions was added 900 μL of distilled water. The optical density (OD540 nm) was evaluated using a BIOBASE brand BK-UV-1600PC spectrophotometer. The data obtained from the standard range made it possible to obtain a graph of type DO = f (concentration of reducing sugars) having the regression line for the equation y = ax. From this line, the concentration of reducing sugars of the various extracts was expressed in g/l.

Cysteine was determined according to the ninhydrin colorimetric method described by Gaitonde (1967). For the assay, 0.35 mL of ninhydrin acid reagent [0.8% (w/v) ninhydrin in HCl: CH₂COOH concentrated in 1:4 (v/v)] was added to 100 μL of soluble cysteine extract (supernatant). The mixture was incubated in water bath (100°C) for 10 min. Then, this reaction mixture was cooled in an ice bath. After cooling, 0.7 mL of 95% ethanol was added to the reaction mixture. The reading of the optical density was made at 560 nm. A standard was prepared from a 0.1% cysteine.

Polyphenol analysis

One gram of the taro leaf powder obtained from the harvested, dry and grounded taro plants was macerated at 4°C for 1 h in 10 mL of 70% (v/v) methanolic solution. After maceration, the mixture was filtered with Whatman paper No. 1. After filtration, the residues were macerated again as previously and then filtered. The recovered filtrates were centrifuged for 20 min at 3000 rpm. The supernatants obtained served as a substrate for analyzing the phenolic compounds.

The polyphenol assay was performed by the method of Singleton and Rossi (1965). To do this, the catechol stock solution (100 μg/ml) served as a standard
substrate. One hundred microliters of each extract were mixed with 2.5 ml of the Folin-Ciocalteu reagent. After 10 min, 2 ml of 20% sodium carbonate was added to the mixture, homogenized and kept in the dark for 60 min at room temperature. The absorbance of each solution was determined at 760 nm using a spectrophotometer. The results were expressed as catechol equivalent in μg of total phenols per g of dry weight of taro leaves.

PPO activity essay

The activity of the PPO was evaluated according to the protocol proposed by Mayer et al. (1966). One gram of taro leaf was finely cut and then ground dry in a porcelain mortar. The ground material obtained was homogenized in 2 ml of 0.1 M sodium phosphate buffer (pH 7) at 4°C. The homogenate was centrifuged at 10,000 rpm at 4°C for 15 min. The supernatant was recovered and served as enzyme extract.

The reaction mixture consisted of 1.5 ml of 0.1 M sodium phosphate buffer at pH 7 and 200 μl of 0.01 M catechol. The reaction was induced by adding 20 μl of the enzyme extract followed by incubation at 30°C for two min. After incubation, the reaction was stopped by immersing the tubes in ice for five min. The absorbance was read at 420 nm using a spectrophotometer. Specific activity was expressed as absorbance at 420 nm/min/mg protein/g fresh material.

PAL activity assay

PAL extraction was performed by the method described by Yingsanga et al. (2008). One gram of fresh taro leaf was finely cut and then ground dry in a porcelain mortar. The ground material obtained was homogenized in 4 ml of 50 mM sodium phosphate buffer at pH 8.8 at 4°C. The resulting extract was filtered and the filtrate was centrifuged at 3000 rpm for 20 min at 4°C. The recovered supernatant was used as the enzyme source.

The PAL was measured in the supernatant following the method of Ross and Sederoff (1992). The reaction mixture consisting of 20 μl of enzyme extract, 500 μl of sodium phosphate buffer pH 8.8 and 600 μl of L-phenylalanine (12 mM) was incubated at room temperature for 1 h. The reaction was stopped by placing the tubes in ice bath. The absorbance of the trans-cinnamic acid released was measured at 290 nm using BK-UV-1600PC BIOBASE spectrophotometer. The enzymatic activity is expressed as a function of the change in absorbance/h/mg of protein/g of fresh material. Protein assay of enzymatic extracts was done following the method of Bradford (1976).

Statistical analysis

Data was entered into an Excel spreadsheet (Microsoft Office, USA, 2010) and subsequently analyzed using SPSS software version 16 for Windows (SPSS, Inc., Chicago, IL, USA) and StatView version 5.0 for Windows (SAS Institute, Inc., IL, USA). Quantitative and qualitative data were presented as mean ± standard deviation (SD) and percent, respectively.

The data analysis of the variance (ANOVA) one factor was used to compare the averages. Duncan’s post hoc test was used later to refine the analysis.

RESULTS

In vitro antagonism assay

The two strains of *Trichoderma* isolates used were antagonistic against *P. colocasiae* (Table 1). The inhibition percentage of the mycelia growth of the pathogen was 34.77 and 41.77% respectively, for *T. harzianum* (Edtm) and *T. aureoviride* (T4). On control plates, colony of *P. colocasiae* covered the 9 cm V8 plate in 5 days. In paired cultures however, the radial extension of this pathogen stopped abruptly few millimeter away from the colonies of *Trichoderma* strains, while the latter continued their normal growth all over the culture. With increasing age, the antagonist overgrew the colony of *P. colocasiae* (Figure 1). Attempts to re-isolate the microorganisms from the intermingling region resulted only in the growth of *Trichoderma* species.

Chemical screening and inhibition effect of organics extracts against *P. colocasiae*

Chemical qualitative analysis of the organic extracts from

Table 1. Inhibition percentage of *P. colocasiae* growth in dual culture after 4 day.

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>T. harzianum</th>
<th>T. aureoviride</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth diameter (mm)</td>
<td>38.33 ± 0.58<sup>c</sup></td>
<td>25 ± 0.00<sup>b</sup></td>
<td>22.33 ± 0.53<sup>b</sup></td>
</tr>
<tr>
<td>Inhibition (%)</td>
<td>0.00<sup>a</sup></td>
<td>34.77±0.00<sup>b</sup></td>
<td>41.77 ± 0.57<sup>c</sup></td>
</tr>
</tbody>
</table>

In each line, means ± standard deviation followed by the same letter are not significantly different (p≤0.05).
Table 2. Chemical constituents of organic extracts from *Trichoderma* spp.

<table>
<thead>
<tr>
<th>Chemical constituents</th>
<th>Phenols</th>
<th>Alkaloids</th>
<th>Flavonoids</th>
<th>Triterpenes</th>
<th>Sterols</th>
<th>Quinones</th>
<th>Anthocyanines</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. aureoviride (T4)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>T. harzianum (Edtm)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

+, Present; -, absent.

Table 3. Mycelial growth inhibition of *P. colocasiae* by organics extracts of *Trichoderma* spp.

<table>
<thead>
<tr>
<th>Organic extracts (µg/plug)</th>
<th>T. aureoviride (T4)</th>
<th>T. harzianum (Edtm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100.00</td>
<td>11.29 ± 2.12<sup>a</sup></td>
<td>16.25 ± 3.75<sup>bc</sup></td>
</tr>
<tr>
<td>200.00</td>
<td>22.58 ± 1.73<sup>b</sup></td>
<td>100.00 ± 0.00<sup>a</sup></td>
</tr>
<tr>
<td>300.00</td>
<td>100.00 ± 0.00<sup>a</sup></td>
<td>100.00 ± 0.00<sup>a</sup></td>
</tr>
<tr>
<td>400.00</td>
<td>100.00 ± 0.00<sup>a</sup></td>
<td>100.00 ± 0.00<sup>a</sup></td>
</tr>
<tr>
<td>500.00</td>
<td>100.00 ± 0.00<sup>a</sup></td>
<td>100.00 ± 0.00<sup>a</sup></td>
</tr>
<tr>
<td>Control</td>
<td>0.00 ± 0.00</td>
<td>0.00 ± 0.00</td>
</tr>
</tbody>
</table>

Means ± standard deviation followed by the same letter are not significantly different (p≤0.05).

The organic extract of *Trichoderma* isolates significantly (P≤0.05) reduced the radial growth of *P. colocasiae* compared to control (Table 3). The inhibition percentage increased with the extract concentration with total inhibition (100%) of mycelial growth occurred at 300 µg/plug. The liquid fermentation of *T. harzianum* (Edtm) and *T. aureoviride* (T4) showed the presence of phenols, flavonoids, alkaloids, sterols and anthocyanins. However, these extracts do not have quinones and triterpenes (Table 2).
Figure 2. Effect of Trichoderma strains on total soluble sugars content in leaf taro plant infected or not with P. colocasiae. Histograms with the same letter are not significantly different. ST0, Untreated plant; ST1, plant treated with T. harzianum (Edtm); ST2, plant treated with T. aureoviride (T4). Each treatment was made by 4 pots with 3 replicates.

Table 4. Effect of bioagent on necrosis inhibition.

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>T. harzianum</th>
<th>T. aureoviride</th>
</tr>
</thead>
<tbody>
<tr>
<td>Necrosis diameter (mm)</td>
<td>51.25 ± 0.95c</td>
<td>27.49 ± 0.92b</td>
<td>25.93 ± 0.92a</td>
</tr>
<tr>
<td>Inhibition (%)</td>
<td>0.00a</td>
<td>46.36 ± 2.88b</td>
<td>49.40 ± 2.96c</td>
</tr>
</tbody>
</table>

In each line, means ± Standard Deviation followed by the same letter are not significantly different (p≤0.05).

and 200 µg/plug respectively, for T. aureoviride (T4) and T. harzianum (Edtm). At rate of 250 and 150 µg/plug respectively for T. aureoviride (T4) and T. harzianum (Edtm) P. colocasiae hyphae appeared under light microscope to be disorganised, heterogeneous and very thin compared to the control. Moreover, when P. colocaseae plug from plate exhibiting total inhibition was removed and transferred to new control V8 agar plate, result showed that the pathogen was killed at 300 and 200 µg/plug respectively, for T. aureoviride (T4) and T. harzianum (Edtm).

Inhibition of necrosis of taro leaf blight

The result showed that the two strains of Trichoderma used significantly (P<0.05) inhibited taro leaf blight necrosis (Table 4). The inhibition of necrosis diameter was 49.40 and 46.36% respectively, for T. aureoviride and T. harzianum.

Total sugars and cysteine leaf content

In healthy plants, results showed that there was no significant difference of the total sugar content between the plants inoculated or not with Trichoderma spp. (Figure 2). However, in infected plants, the content of total soluble sugar was significantly increased after inoculation with T. aureoviride.

In the healthy plants, the inoculation of each Trichoderma isolate significantly increased the cysteine content compared to non-inoculated plants (Figure 3). On the other hand, in infected plants, there was no significant
difference in cysteine content between the plant treated with Trichoderma and control.

Polyphenol content

The results presented in the Figure 4 revealed that, there is significant increase (P=0.01) of polyphenol content in healthy and infected plants after inoculation with T. aureoviride (T4), and T. harzianum (Edtm). In addition, compared to healthy plants, infection significantly (P=0.01) increased the polyphenol content.

PPO activity

The effect of Trichoderma and the infection resulted in a change in enzymatic activity of PPO (Figure 5). In healthy and infected plants, there was a significant (P=0.001) increase in enzymatic activity compared to controls. In addition, infection resulted in increasing the PPO activity.

PAL activity

PAL activity (Figure 6) significantly increased (P=0.005) when the plants were treated with T. aureoviride (T4) and T. harzianum (Edtm) both in healthy and infected plants. Similarly, the activity of this enzyme also increased in infected plants, compared to healthy one.

DISCUSSION

The current work evaluated the potency of two strains of Trichoderma to inhibit the growth of P. colocasiae and stimulate the biochemical defense mechanisms in taro plants. In dual culture tests, the results showed that both Trichoderma isolates inhibited mycelial growth of P. colocasiae on V8 agar. This inhibition could be due to the production of lytic enzymes (glucanases, proteinases, chitinases and cellulases) by Trichoderma which may degrade P. colocasiae cell walls (Howell, 2003; Harman, 2006). Moreover, these antagonists are documented to produce volatile and non-volatile antibiotics which could act in synergy with enzymes to inhibit the pathogen. Mycoparasitism is also one of the main mechanisms involved in antifungal antagonism. However, these mechanisms are probably never exclusively responsible for inhibition of the pathogen, but they act in combination (Howell, 2003; Harman, 2006). According to Abo-Elyour et al. (2014), mycoparasitic activity of Trichoderma is manifested morphologically by the overgrowth upon the mycelial growth of the pathogen. These observations
Figure 4. Effect of *Trichoderma* spp on polyphenol content in leaf taro plant infected or not with *P. colocasiae*. Histograms with the same letter are not significantly different. **ST0**, Untreated plant; **ST1**, plant treated with *T. harzianum* (dtm); **ST2**, plant treated with *T. aureoviride* (T4). Each treatment was made by 4 pots with 3 replicates.

Figure 5. Effect of *Trichoderma* spp on activity of PPO content in leaf taro plant infected or not with *P. colocasiae*. Histograms with the same letter are not significantly different. **ST0**, Untreated plant; **ST1**, plant treated with *T. harzianum* (dtm); **ST2**, plant treated with *T. aureovirideae* (T4). Each treatment was made by 4 pots with 3 replicates.
were also obtained in this study. During the antagonism, each strain of *Trichoderma* used overgrown on mycelia of *P. colocasiae* and the pathogen was killed. Furthermore, organic extract from fermented *Trichoderma* isolated also inhibited the mycelia growth of *P. colocasiae*. These results could be due to the presence of several classes of chemical compounds such as phenols, alkaloids, flavonoids, quinones, sterols, and anthocyanines found into the *Trichoderma* extracts and which are well known for their inhibition potential of plant pathogens (Kubiczek and Harman, 1998; Kümük and Kivanç, 2005; Agnem et al., 2011). Results obtained in this study are similar to those of Promwee et al. (2017) who showed the capacity of organic ethyl acetate extract from *T. harzianum* (FR-NST-009) to inhibit the mycelial growth of *Phytophthora* spp. and related the activity to the presence of several classes of chemical compounds.

The application of biological agents on taro rhizosphere was used to evaluate systemic resistance. Induction of plant resistance by *Trichoderma* is usually expressed visually by reducing disease symptoms. This work showed a significant reduction of necrosis in plants treated with both strain of *Trichoderma*. Since the antagonist and the pathogen were applied at different points (the former in the taro rhizosphere and the later on leaves), the reduction of the disease symptoms could be due to induced systemic resistance. However, the direct antagonism should not be excluded. Indeed, *Trichoderma* can also act as an endophytic fungus, diffuse into various parts of the plant and release molecules that could have a direct antimicrobial effect on the pathogen (Pandey et al., 2015). Several studies have already shown the ability of *Trichoderma* spp. to induce resistance to leaf pathogens either by foliar or root application (Prakasam and Sharma, 2012; Shahnaz et al., 2012; Mukherjee et al., 2014; Promwee et al., 2017). Indirect antagonism of biocontrol agents may induce the activities of various enzymes and defensive chemicals in plants.

The PPO and PAL activity were significantly increased in plants treated with *Trichoderma*. Indeed, PPO is involved in the oxidation of phenolic compounds to quinone’s. Li and Steffens (2002) suggested that quinonoid products of PPO are highly reactive molecules which caused the covalent modification and cross-linking of nucleophilic substituents of amino acids and proteins. These modification are thought to exert an anti-nutritive defense against pathogens. Moreover, the active quinones produced by PPO may possess direct antibiotic and cytotoxic activities to pathogens. They can be polymerized for synthesis of wall-reinforcing structures such as lignin and suberin (Vidhyasekaran, 1988). Concerning PAL, it is the first enzyme in the phenylpropanoid biosynthesis pathway involved in the production of phenolic compounds such as phytoalexins,

Figure 6 Effect of *Trichoderma* spp. on activity of PAL in leaf taro plant infected or not with *P. colocasiae*

Histograms with the same letter are not significantly different. ST0, Untreated plant; ST1, plant treated with *T. harzianum* (dm); ST2, plant treated with *T. aureovirideae* (T4). Each treatment was made by 4 pots with 3 replicates.
furanocoumarins, phytoanticipins and compounds forming part of the structural barrier such as the deposition of callose which are responsible for the resistance of plant pathogens (Shoresh et al., 2010).

The results from this study also showed that, polyphenol content in taro plants were increased by the treatments with Trichoderma. The accumulation of these compounds in plants cells could be related to their role in strengthening the cell wall, their direct antimicrobial role on the pathogen as well as their activation of defense genes of plant (Singh et al., 2010; Surekha et al., 2013; Slatnar et al., 2016).

In healthy plant, cysteine content significantly increased after treatment with Trichoderma. Cysteine plays a central role in the metabolism and the response of the plant to biotic stress. It intervenes in the protein structure where it is often found in their active site, associated with cofactors. It is also the precursor of the glucosylnolates of methionine and glutathione which are involved in hypersensitive reaction in plants (Romero et al., 2013; Coutilier et al., 2013).

Overall, significant increase of PPO, PAL, polyphenols and cysteine was obtained in leaf taro plants treated with Trichoderma or/and infected with P. colocasiae suggesting that, these metabolites are implicated in the adaptation of plant inoculated by Trichoderma to biotic stress.

CONCLUSION
This study showed that T. harzianum (Edtm) and T. aureoviride (T4) are antagonist against P. colocasiae and can stimulate the biochemical defense in taro plants. The use of these bio-agents offers a promising alternative to chemical fungicides in management of taro leaf blight. However, further studies on isolation and purification of pure compounds from organic extracts of Trichoderma isolates as well as field experiments by foliar application should be investigated.

REFERENCES

